Resistance definition
Resistance is an electrical quantity that measures how the device or material reduces the electric current flow through it
The resistance is measured in units of ohms (Ω)
If we make an analogy to water flow in pipes, the resistance is bigger when the pipe is thinner, so the water flow is decreased
Resistance calculation
The resistance of a conductor is resistivity of the conductor's material times the conductor's length divided by the conductor's cross sectional area.
R is the resistance in ohms (Ω).
ρ is the resistivity in ohms-meter (Ω×m)
l is the length of the conductor in meter (m)
A is the cross sectional area of the conductor in square meters (m2)
It is easy to understand this formula with water pipes analogy:
- when the pipe is longer, the length is bigger and the resistance will increase
- when the pipe is wider, the cross sectional area is bigger and the resistance will decrease
Resistance calculation with ohm's law
R is the resistance of the resistor in ohms (Ω
V is the voltage drop on the resistor in volts (V
I is the current of the resistor in amperes (A
Temperature effects of resistance
The resistance of a resistor increases when temperature of the resistor increases
R2 = R1 × ( 1 + α(T2 - T1) )
R2 is the resistance at temperature T2 in ohms (Ω
R1 is the resistance at temperature T1 in ohms (Ω
α is the temperature coefficient
Resistance of resistors in series
The total equivalent resistance of resistors in series is the sum of the resistance values
RTotal = R1+ R2+ R3
Resistance of resistors in parallel
The total equivalent resistance of resistors in parallel is given by
Measuring electrical resistance
Electrical resistance is measured with ohmmeter instrument
In order to measure the resistance of a resistor or a circuit, the circuit should have the power supply turned off
The ohmmeter should be connected to the two ends of the circuit so the resistance can be read
No comments:
Post a Comment